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ABSTRACT

The application of unmanned system performing large-scale tasks, for instance, long-term

surveillance/reconnaissance, large area sensing/mapping, and long distance materials handling

is a relatively new and exciting topic. However, developing a practical system is still chal-

lenging due to complex models and hardware restriction. This manuscript explores various

path planning missions from a more realistic perspective, such as point-to-point obstacle avoid-

ing, multi-targets trajectory finding, informative motion planning, and multi-Hamiltonian Path

Problem (mHPP) with two types of unmanned vehicles, Unmanned Ariel Vehicles (UAVs) and

Unmanned Ground Vehicles (UGVs). These problems are formulated as classical optimization

problems with constraints representing the environment and kinematic limitations, and then

solved by proposed numerical or heuristic optimization approaches. The selected methods are

used to handle nonlinear, discontinuous, and multi-objective formulations of the constrained

mission planning problems. The feasibility and effectiveness of the proposed algorithms are

inspected by the performance and comparison with other proposed methods in literature. The

resulting simulations and experimental tests obtained from all the methods are demonstrated

and discussed.
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CHAPTER 1. INTRODUCTION

Study of autonomous robots has been a growing interest over the past few years, yet,

producing an intelligent multi-tasking unmanned vehicle is still challenging. Different types of

robots, such as Unmanned Underwater Vehicles (UUVs), Unmanned Ground Vehicles (UGVs),

and Unmanned Ariel Vehicles (UAVs) can be deployed into various unexplored environments

which can be abominable or hazardous. The motivation for the development of autonomous

systems for unmanned vehicles is to accomplish complex missions far beyond the abilities for

human beings to manage. However, the mission planning is often not only dependent upon the

environment, but also limited by the characteristics of vehicles, such as the kinematics of UAV

or the on-board battery of UGV. The awareness of all possible constraints is significant while

constructing path planning missions for unmanned vehicles.

The work of this manuscript introduces four distinct path planning scenarios. The first case

describes the most common, point-to-point problem motion planning of a UAV. That is, the

vehicle is expected to travel from an initial point to a final point, whether in a known or unknown

environment. Many path planning algorithms have been developed to search for a feasible

trajectory under certain assumptions. In the past decade, optimal control theory has shown

success generating flight paths and guiding UAVs to fly amongst pre-defined obstacles and No-

Fly Zone [Jorris and Cobb (2009); Mattei and Blasi (2010)]. Recently, heuristic optimization

algorithms have become widely used to explore a design space with absence of knowledge

between two points due to its flexibility and efficiency [Buniyamin et al. (2011); Foo et al. (2006);

Šǐslák et al. (2009)]. An optimized heuristic method, such as the optimized Rapidly-Exploring

Random Tree algorithm, named as RRT*, has been developed to search for obstacle avoiding

paths with asymptotic optimality property [Karaman and Frazzoli (2011); Karaman (2011)].

However, the RRT* algorithm itself does not include the flight kinematic constraints, therefore,
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a refined RRT* algorithm is proposed here to integrate the flight kinematic constraints to

generate smooth paths.

The second case builds on the work of the first case, which solved a point-to-point collision-

free path, and expands the environment to an obstacle-free environment with numerous target

locations. The trajectory is segmented from waypoint to waypoint while still maintaining its

continuity and satisfying the kinematic constraints of the UAV. For a multi-waypoint path

planning problem, it requires the UAV or robot to perform the specified speed, position, and

sequence computed by techniques, such as heuristic algorithms or polynomial methods, in order

to reach all waypoints [Davies and Jnifene (2006); Hashim and Lu (2009); McGee and Hedrick

(2006)]. Another extension of this work is evaluating decisions of the unknown sequence to pass

through all waypoints from a given beginning location. However, it is difficult to decide the se-

quence unless it is pre-defined or evaluated separately from the dynamic system. New concepts

for decision making have been proposed, for instance, hybrid optimal control system designed

with switching phases while the vehicle is conducting different situations [Ross and D’Souza

(2005); Soler et al. (2010)]. To handle the decision making of visiting sequences, along with the

kinematics of the UAV, a set of hybrid decision variables, including both binary and continuous

variables, is introduced. The problem is formulated into a form of general/nonconvex QCQP

problems, and the flight path and the sequence can be solved simultaneously with an iterative

rank minimization (IRM) algorithm.

Another type of autonomous vehicle used in this work is UGV. The third case assigns an

UGV for an information gathering mission, where the problem assumed that the quality of in-

formation is uniform throughout the environment. Meanwhile, once the information has been

collected it ceases to exist and does not regenerate. Due to the even quality of information, the

problem becomes equivalent to an area coverage problem while the overlapped portion is elim-

inated. Recent applications have been done by Smith and Hollinger. Smith presents a linear

temporal-logic (LTL) approach of optimal path planning for surveillance [Stephen Smith and

Rus (2011)], and a Rapidly-exploring Information Gathering (RIG) method and its variants are

proposed by Hollinger to maximize the gathered information with diverse information field to

solve obstacle avoiding problem [Hollinger and Sukhatme (2014)]. Challenges of such missions
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is that the operation time typically exceeds the limitations of the UGVs, so to continue oper-

ation, the UGVs must gather additional energy from other resources. Alternative approaches

to extending the operational life of a vehicle by harvesting renewable energy, such as solar

energy, have shown to be viable options. Research in the area of solar-powered robotics focuses

on mission planning and developing energy awareness. For example, persistent operation for

surveillance missions can be achieved by gathering solar energy along an optimally designed

path [Vasisht and Mesbahi (2015)]. In addition, energy-aware path planning can be accom-

plished by creating solar maps using a Gaussian regression method [Plonski et al. (2013)]. A

constrained RRT planning strategy is developed to monitor the constraints and maximize the

performance.

The last case investigates the possibility of a cooperative multiple UGVs system as multi-

robot systems have proven to be effective when performing large-scale tasks. These tasks

generally require robots to operate in an environment for prolonged periods of time. When

involving only a single robot in such tasks, the robotic system is generally subject to limited

mobility and battery capacity. However, even a multi-robot system in these tasks cannot

guarantee long duration operation that always meets the task requirements without external

power supply. Recently, researchers have focused on extending the operational time of a robotic

system by using a cooperative team of UGVs with a charging station. For example, work in

Couture [Couture-Beil and Vaughan (2009)] proposed using a multi-robot system that executes

a transportation task and periodically recharge from a docking station, which would attempt

to incrementally improve its location. Similarly, another work in Wang [Wang et al. (2014)]

examined a vehicle routing problem with energy constraints through a network where there

are some charging sites within the network. Works in Keshmiri and Wawerla [Keshmiri (2011);

Wawerla and Vaughan (2007)] examined practical and scalable control methods to address a

multi-robot recharging problem. A novel approach, explored in this work, is to extend the

operation time of a cooperative team of UGVs by incorporating a mobile charging station

that has the capability of harvesting solar energy during operation. This solar-powered mobile

charging station not only provides power for other vehicles, but also aids in completing the

tasks the entire UGV team is attempting to accomplish. The variables to be determined in
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the cooperative motion planning problem include the trajectories and associated velocities of

each robot and the final destination where charging will occur. This problem is similar to

a multi-depot multiple traveling salesperson problem (MmTSP) or a multiple Hamiltonian

path problem (mHPP). Existing methods used to solve MmTSP or mHPP include ant colony

optimization [Ghafurian and Javadian (2011)], genetic algorithm [Carter and Ragsdale (2006)],

and approximation algorithm [Rathinam and Raja (2007)], just to name a few. However, none

of these methods considers the dynamics of the traveling agents. The problem is examined

under a cascaded heuristic optimization (CHO) approach integrating the Genetic Algorithm

(GA) to solve the mHPP for objective function and then the Particle Swarm Optimization

(PSO) to generate each UGVs velocities and power schedules along the path for strict energy

constraints.

This thesis is orgaized as follows: Chapters 2-5 model the problems for the unmanned aerial

vehicles with avoidance zones, the unmanned aerial vehicles with decision parameter, the infor-

mation gathering using solar-powered unmanned ground vehicles, and a multi-robot team with

a solar-powered charging station, respectively. The problem formulations and methodologies

are also described in relative chapters. Then the computer simulations and experimental results

for discussed path planning cases are demonstrated in Chapter 6. Lastly, the conclusion and

final remarks are presented in Chapter 7.
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CHAPTER 2. PATH PLANNING OF UNMANNED AERIAL

VEHICLES WITH AVOIDANCE ZONES

This chapter presents a method for Unmanned Aerial Vehicle (UAV) path planning prob-

lems with avoidance zones. The objective is to generate a minimum time flight path with

a specific speed while satisfying the initial and terminal constraints and avoiding no-flying

zones of different shapes. The approach, based on heuristic search, refines the paths searched

from optimized Rapidly-Exploring Random Tree (RRT*) algorithm to generate smoother paths

satisfying flight kinematics.

2.1 Problem Formulation

The problem of solving a single UAV passing through hostile environments with avoidance

zones is illustrated in Figure. 2.1, where the UAV has assigned starting and ending points,

denoted as triangles. The avoidance zones have pre-defined locations and shapes. Depending

on the requirements of the flight mission, the performance index can be assigned accordingly,

i.e., minimum flight time.

𝑉

Avoidance zone 

𝑗 at [𝑐𝑗 , 𝑑𝑗]

[𝑥0 , 𝑦0 ]

𝑥𝑓 , 𝑦𝑓

x

y

𝜃

Figure 2.1 Illustration of UAV path planning problem with avoidance zones.
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The flight kinematics of a UAV in two-dimensional space is represented by a single control

model in the form of

ẋ = V cos θ

ẏ = V sin θ (2.1)

θ̇ = u

|u| ≤ umax,

where x and y are the coordinates, V is the specified cruise speed, θ is the heading angle, and

umax is the maximum rate of change of the heading angle . The starting and ending points are

specified as [x0, y0] and [xf , yf ]. The avoidance zones are represented by ellipses formulated as,

(x− cj
aj

)2
+
(y − dj

bj

)2
≥ 1, ∀ j = 1, . . . ,m′, (2.2)

where [cj , dj ] represents the center of avoidance zone j, j = 1, . . . ,m′, (aj , bj) are pre-defined

parameters, i.e., the semi-major axes of the elliptical zones, and m′ is the number of avoidance

zones. The above function can create different elliptical shapes (including rotated ones, for they

are still quadratic) modeling a range of avoidance zones with specified centers. A special case is

a circular-shaped zone by setting aj = bj . For minimum time of flight, the performance index

is J =
∫ tf
t0

1dt. Consequently, the minimum time path planning problems can be formulated as

J = minu
∫ tf
t0

1dt

s.t. x(t0) = x0, y(t0) = y0, x(tf ) = xf , y(tf ) = yf ,

ẋ = V cos θ

ẏ = V sin θ (2.3)(
x−cj
aj

)2
+
(
y−dj
bj

)2
≥ 1, ∀ j = 1, . . . ,m′,∀x, y, t0 ≤ t ≤ tf

θ̇ = u

|u| ≤ umax.
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This manuscript propose a two steps heuristic approach to solve the UAV path planning

problems posed in (2.3) to improve the computational performance. The first step solves a

feasible path with modified RRT* from the pre-defined obstacles, then the second step optimizes

the path with refined RRT* for flight kinematics constraints.

2.2 RRT* Algorithm

This section attempts to approach the path planning problem from an incremental sampling

and goal-biased exploring aspect. The Rapidly-Exploring Random Tree (RRT) was first intro-

duced by LaValle in 1998, which has a strong capability searching multi-dimensional design

spaces with stochastic sampling process [Lavalle (1998)]. However, the original RRT algo-

rithm does not guarantee convergence and local optimal, therefore, an Asymptotically Optimal

Rapidly-Exploring Random Tree (RRT*) was developed by Karaman and Frazzoli in 2011

[Karaman and Frazzoli (2011)]. The RRT* has a goal-biased sampling process and a ‘rewire’

process, which is designed to reduce the cost of trees toward the goal. The comparison of RRT

and RRT* is shown in Figure. 2.2. In this manuscript, a modified version of RRT* algorithm

is proposed to fast generate a feasible path for the path planning problem with avoidance zones

[Karaman (2011)]. A refinement RRT* is used subsequently to satisfy the UAV kinematics and

minimize the flight time.

Figure 2.2 Comparison of RRT (up) and RRT* (down).
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2.2.1 Modified RRT*

Let S represent the unexplored domain and S ⊂ Rn . The obstacle region and obstacle-free

region are denoted as Sobs and Sfree, respectively, where Sfree = S \ Sobs. Given the initial

position, zinitial = [x0, y0], and goal position, zgoal = [xf , yf ], the RRT* algorithm solves the

motion planning problem by searching through the Sfree area to yield a tree, T . Furthermore,

an iterative process examines T from zinitial to zgoal and selects a feasible path, P , that satisfies

all the given constraints.

A random position zrand is generated by sampling the obstacle-free zone. It then determines

its potential parent zmin and tests for collision before extending the tree. If the two points do

not contact with obstacles in between, zrand becomes znew and a link is made between the

two points. This position znew now joins the tree with remark of its parent. If zrand collides

with obstacles on the way to zmin, it returns to sample a new random state and continue the

algorithm. With sufficient iteration, the expansion of the tree should obtain at least one znew

that is close to zgoal while satisfying the condition that the distance between znew and zgoal

is less than dmin. The parameter, dmin, represents a defined minimum distance within which

znew and zgoal can be connected. In other words, at least one feasible path exists in T after the

final node zgoal is added. The path P starts building up from zgoal and traces back to zinitial

via the remarks of related parent from tree. Before discussing the algorithm, it is important to

introduce a few necessary functions in the optimized RRT algorithm.

Sampling: The sample function returns a state, zrand, that randomly samples from the

desired field. The sampling process is assumed to be uniformly distributed among the selected

nodes in the field such that zrand ∈ Sfree, p1 ∈ P , as well as p2 ∈ P .

Collision Evaluation: By introducing a set of nodes, the Collision eval function forms

an edge among two nodes and returns true if the entire edge occurs on the obstacle-free zone

[LaValle (2006)].

Cost: The cost computation procedure evaluates the summation of distance from zrand

to zgoal and the distance from zrand to any nearby nodes. When seeking for the minimum

total distance during exploring, the edges of T tend to construct toward zgoal to accelerate the

process of solving for a feasible solution.
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Path Connecting: Given a tree with a feasible solution, i.e., P ⊂ Rn and P ⊂ T , the

Path Connect function backtracks the path from zgoal to each corresponding parents until it

reaches zinitial.

In the RRT* algorithm, the tree begins with zinitial and an empty path and the steps are

summarized as:

1) T ← {zinitial};P ← {}

2) Iteration: While isempty(P ) Do

2.1) A random position zrand is generated by sampling the obstacle-free zone, zrand ← Sample(Sfree).

2.2) It then determines its potential parent zmin by choosing the node with lowest overall cost

from the tree, zmin ← Cost(zrand, T ).

2.3) If the two points do not contact with obstacles in between, zrand becomes znew and a link is

made between two points, denoted by T ← T ∪ {(zmin, znew)} for Collision eval (zrand, zmin)

being true.

2.4) If Collision eval (zrand, zmin) is false which indicates zrand collides with obstacles on the

way to zmin, the algorithm returns step 2.3 to sample a new random state and continue the

process, denoted by znew ← zrand.

2.5) With sufficient iteration, the expansion of the tree should obtain at least one znew that is

close to zgoal while satisfying the condition that the distance between znew and zgoal is less than

dmin, where dmin represents a defined minimum distance within which T ← T ∪{(znew, zgoal)}.

3) The path P starts building up from zgoal and traces back to zinitial via the remarks of related

parent from trees, dented by P ← Path Connect(T ).

Figure 2.3 Example of modified RRT* steps.
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Figure 2.4 Flowchart of modified RRT* steps.
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2.2.2 Refined RRT*

The RRT* algorithm stated above does not include the flight kinematics described in (2.1).

In addition, there is more margin to shorten the entire path after connecting the feasible

sampling trees. Two refinement steps are considered to further improve the performance index

and smooth the path P obtained from RRT* by integrating the flight kinematic constraints.

Path Optimization: The Path Opt function randomly samples two points on P and checks

for any possible obstacle collision. If Collision eval returns true, the new nodes p1 and p2

are added to P to replace any intermediate node. Meanwhile, a new edge between p1 and p2 is

created as a substitution resulting in shortening the entire path length.

Path Refinement: In order to satisfy the limitation of maximum heading angle change

rate, umax, the Steering eval function verifies the heading angle change rate, defined as

∆φ̇, between two connecting edges added in Path Opt function. The change of heading angle

is determined by the three ending points of two connecting edges located on a circular arc,

as shown in Figure. 2.5. The heading angle rate is approximated by ∆φ divided by the

traveling time along the circular arc. The Steering eval function returns true when all of the

approximated heading angle change rates are no greater than umax.

.

.

.

..

.
Avoidance 

Zone



Figure 2.5 Example of refinement steps.



www.manaraa.com

12

For step 3 in RRT* algorithm, the refinement steps are stated below:

4) Set Path Opt(P )← RRT ∗(P ),

5) Iteration: while Steering eval(P ) is not true, (p1, p2) ← Sample(P ), If Collision eval

(p1, p2), then P ← P ∪ {(p1, p2)}.

The replaced edges stated in the refinement step reduce the travel time and smooth the sharp

turns by eliminating the violation of threshold φ. The loop is terminated once Path Opt(P )

is no longer empty. The refinement procedure is completely heuristic as well as the RRT*

algorithm.

Figure 2.6 Flowchart of refined RRT* steps.
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CHAPTER 3. PATH PLANNING OF UNMANNED AERIAL

VEHICLES WITH MULTI-WAYPOINT AND DECISION PARAMETER

This chapter is interested in the path planning problem of an Unmanned Aerial Vehicle

(UAV) for multiple target locations. The mission has specified the starting point, numerous

waypoints, and kinematics of the UAV. An approach is proposed to determine the minimum

time flight path and the visiting sequence for the waypoints by introducing a binary integer

decision parameter and numerical optimization. Next, the path planning problem is reformu-

lated as a general Quadratically Constrained Quadratic Programming (QCQP) problem and

solved by an iterative convex optimization method.

3.1 Problem Formulation

The problem can be described as a single UAV passing through multiple given waypoints,

where the UAV has an assigned starting point, but the sequence to reach all waypoints and

ending point are to be determined. A set of decision parameters is distributed to each waypoint

to evaluate the ending point and the order reaching the rest of the waypoints. The entire flight

path is comprised of multiple sections equal to the number of waypoints, demonstrated in

Figure 6.14. Depending on the requirements of the flight mission, the performance index can

be assigned accordingly, i.e., minimum flight time.
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Figure 3.1 Example of path plan through multiple waypoints.

The flight kinematics of a UAV in two-dimensional space is represented by a unicycle model

in the form of

ẋ = V cos θ

ẏ = V sin θ (3.1)

θ̇ = u

|u| ≤ umax,

where x and y are the coordinates, V is the specific cruise speed, θ is the heading angle, and

umax is the maximum heading angle changing rate. The starting point is specified as [x0, y0].

The decision parameters controlling the sequence are represented by the binary integer system

γab ∈ {0, 1}, ∀ a = 1, ..., k and b = 1, ..., l, (3.2)

where k is number of waypoints and l is number of flight path sections. The case γab = 0

indicates the decision that point a will be joined by the ending point of section b, and vice

versa. The diverse path plans react to different values of decision parameters are illustrated

in Figure 3.2. For minimum time flight, the performance index is determined by J =
∫ tf
t0

1dt.
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Consequently, the minimum time path planning problems can be formulated as

J = minx,y,θ,u
∫ tf
t0

1dt

s.t. x(t0) = x0, y(t0) = y0,

ẋ = V cos θ

ẏ = V sin θ (3.3)

θ̇ = u

|u| ≤ umax

γab ∈ {0, 1},∀ a = 1, ..., k and b = 1, ..., l.

The above path planning problem formulated by nonlinear equations is difficult to solve.

The indirect method requires deriving the necessary conditions for optimality based on Hamil-

tonian and Euler Lagrange equations. In most cases, the difficulty of guessing the initial adjoint

variables and the trigonometric equations involved in the problem formulation make the indi-

rect method infeasible. The direct method, such as collocation and NLP cannot guarantee

fast convergence of a local optimal solution, even a feasible solution, when highly nonlinear

equations are included in the constraints and/or an initial guess of the solution is randomly

selected. Therefore, a novel approaches are proposed below to solve the UAV path planning

problems with multi-waypoint and undetermined sequence.

Figure 3.2 Path plans respect to different decision parameters.



www.manaraa.com

16

3.1.1 Numerical Optimization Approach

The first step in numerical optimization approach is to convert the nonlinear optimization

problem formulated in (3.3) into a general QCQP problem, where the objective is a quadratic

function and the constraints are quadratic equalities or inequalities. An iterative convex op-

timization method is then introduced to solve the general QCQP problem. The novelty of

QCQP formulation and its associated iterative method is that it does not involve lineariza-

tion procedures in the formulation and optimization approach, such that errors generated from

linearization of a highly nonlinear model are inevitable.

3.1.1.1 Reformulation of the Path Planning Problems as QCQP Problems

The unicycle model described in (3.1) for UAV path planning includes trigonometric func-

tions, which are highly nonlinear and may generate singular matrices in computational oper-

ations. The first step toward solving the path planning problem with avoidance zones is to

reformulate the above nonlinear optimization problems as general QCQP problems via dis-

cretization method. Each continuous flight path can be discretized into a series of segments

represented by coordinates [xh, yh], h = 1, ...,H, at each node, where H is the number of

discrete nodes. By discretization, the change rate of the coordinates can be approximately

determined by two adjacent nodes,

ẋ =
xh+1−xh

∆t = V cos θ, h = 1, ...,H, (3.4)

ẏ =
yh+1−yy

∆t = V sin θ, h = 1, ...,H, (3.5)

where ∆t is the uniform time interval between two adjacent nodes. The above two equations

can be synthesized as

(xh+1 − xh)2 + (yh+1 − yh)2 = V 2(∆t)2, h = 1, ...,H. (3.6)

Differentiating (3.4)-(3.5) leads to

ẍ =
xh+2+xh−2xh+1

(∆t)2
= −V θ̇ sin θ, h = 1, ...,H,

ÿ =
yh+2+yh−2yh+1

(∆t)2
= V θ̇ cos θ, h = 1, ...,H.
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Combining with θ̇ = u and |u| ≤ umax, the above equations can be synthesized as

θ̇2 =
[xh+2 + xh − 2xh+1

(V∆t)2

]2
+
[yh+2 + yh − 2yh+1

(V∆t)2

]2
≤ u2

max.

By introducing an additional variable t′ = ∆t2, the above constraint can be reformulated

as a quadratic inequality in the form of

(xh+2 + xh − 2xh+1)2 + (yh+2 + yh − 2yh+1)2 ≤ V 2u2
maxt

′2,

h = 1, ...,H − 2.

The binary system described in (3.2) can also be further expressed as equality and inequality

constraints.

γab(γab − 1) = 0,∀ a = 1, ..., k and b = 1, ..., l.∑k
p=1 γap = k − 1, ∀ a = 1, ..., k,∑l
q=1 γqb = l − 1, ∀ b = 1, ..., l,

γ2
ab ≥

(xa−xfb )2+(ya−yfb )2

M , ∀ a = 1, ..., k and b = 1, ..., l,

where [xa, ya] represents the given waypoints, [xfb , yfb ] are the discretized final point of section b,

and M ∈ R is a pre-defined constant. The summation of decision parameters for each waypoint,

γap, equal to k−1 implies that one waypoint can only be connected by one section. Meanwhile,

the summation of decision parameters for each section, γqb, equivalent to l − 1 implies that

one section would only send to one waypoint. While the final point of each section is getting

close to waypoints, i.e., the distance between [xfb , yfb ] and [xa, ya] is approaching zero, if the

connection is allowed and the flight kinematics are satisfied then the value of corresponding γab

would be 0 and the rest of related decision parameters would return 1. The parameter M is

set to be a large number to keep the distance ratio always less than 1, therefore, the decision

parameters are restricted to not be greater than 1. Based on the above reformulation, the path

planning problems with multiple sections can be generalized as a nonconvex QCQP problem

in the form of
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J = minx,y,θ,u
∫ tf
t0

1dt

s.t. x(t0) = x0, y(t0) = y0,

(xh+1,b − xh,b)2 + (yh+1,b − yh,b)2 = V 2(∆tb)
2,

h = 1, ...,H,∀ b = 1, ..., l,

(xh+2,b + xh,b − 2xh+1,b)
2 + (yh+2,b + yh,b − 2yh+1,b)

2

≤ V 2u2
maxt

′
b
2, h = 1, ...,H − 2,∀ b = 1, ..., l,

γab(γab − 1) = 0,∀ a = 1, ..., k and b = 1, ..., l,∑k
p=1 γap = k − 1, ∀ a = 1, ..., k,∑l
q=1 γqb = l − 1,∀ b = 1, ..., l,

γ2
ab ≥

(xa−xfb )2+(ya−yfb )2

M , ∀ a = 1, ..., k and b = 1, ..., l,

t′ = (∆tb)
2, ∀ b = 1, ..., l.

To retain continuity between two adjacent sections, the velocity components of the last

point of the previous section and the first point of the current section need to stay the same.

Additionally, the heading angle changing rate needs to satisfy the inequality constraint as well,

which is approximated by the last two points of the previous section and the first point of the

current section. Based on the above reformulation, the path planning problems with avoidance

zones can be generalized as a nonconvex QCQP problem in the form of

J = minx xTQ0x + a0
Tx

s.t. xTQjx + aj
Tx ≤ cj ,∀ j = 1, ...,m, (3.7)

lx ≤ x ≤ ux,

where x ∈ Rn is the unknown vector to be determined, Qj ∈ Sn×n, j = 0, ...,m, is an arbitrary

symmetric matrix, cj ∈ R, j = 1, ...,m, and aj ∈ Rn, j = 0, ...,m. Moreover, lx ∈ Rn and

ux ∈ Rn are the lower and upper bounds on x, respectively. Since Qj (j = 0, ...,m) is not

necessarily a positive definite matrix, problem in (3.7) is classified as NP-hard.
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3.1.1.2 An Iterative Approach for General QCQP Problems

Efforts toward solving general QCQP problems have been focused on finding the bounds

on the optimal values by linear or semidefinite relaxation [Vandenberghe and Boyd (1996)].

Although randomization and linearization have been used to find an approximate solution, nei-

ther approach guarantees optimality of the approximate solution with a determined convergence

rate [Luo et al. (2010)].

The above QCQP problem with inhomogeneous quadratic function can be transformed into

homogeneous ones by introducing a new variable α ∈ R and a new quadratic constraint α2 = 1

by the following formulation

J = min

[
xT α

] Q0 a0/2

aT0 /2 0


x

α


s.t.

[
xT α

] Qj aj/2

aTj /2 0


x

α

+ cj ≤ 0, (3.8)

∀ j = 1, ...,m,

lx ≤ x ≤ ux,

α2 = 1.

Then x∗/α∗ will be a solution of the original problem stated in (3.7), while (x∗, α∗) is the

solution pair of (3.8). In addition, linear constraints in (3.7) can be rewritten in the above

quadratic form as well by setting corresponding matrix Q = 0. The homogeneous QCQP

problem is formulated as

J = min xTQ0x (3.9)

s.t. xTQjx ≤ cj , ∀ j = 1, ...,m.

Based on this fact, any inhomogeneous QCQP can be transformed into a homogeneous one.

Without loss of generality, the following approach to solve nonconvex QCQP problems focuses

on homogeneous QCQPs.
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After introducing a rank one positive semidefinite matrix, X = xxT , the SDP relaxation

method is formulated as

J = minX 〈X,Q0〉

s.t. 〈X,Qj〉 ≤ cj , ∀ j = 1, ...,m, (3.10)

X � 0,

where ‘〈·〉’ denotes the inner product of two matrices, i.e., 〈A,B〉 = trace(ATB). By refor-

mulating the QCQP problem as a relaxed SDP problem, one can obtain a lower bound on

its optimal value. However, the relaxation method will not yield an optimal solution of the

unknown variables x. The only difference between the SDP relaxation and the equivalent con-

version is that the rank-one constraint, X = xxT , is excluded in SDP relaxation. In order to

obtain the optimal solution of x, past work reconsider the rank-one constraint on matrix X

and propose an alternative approach to gradually approach the rank constraint [Dai and Sun

(2015); Sun and Dai (2015)].

A matrix with rank-one has only one nonzero eigenvalue. Therefore, instead of putting a

constraint on the rank, we focus on constraining the eigenvalues of X to enforce the n−1 smallest

eigenvalues of X are all zero. It has been proven that, when X is a nonzero, positive semidefinite

matrix, X is a rank-one matrix if and only if rIn−1−VTXV � 0, where V ∈ Rn×(n−1) are the

eigenvectors corresponding to the n − 1 smallest eigenvalues of X, In−1 ∈ R(n−1)×(n−1) is an

identity matrix, and r is a significantly small positive number. In other words, a substitute for

the rank one constraint on X is the semidefinite constraint rIn−1 −VTXV � 0, where r → 0.

However, until we can find the optimal solution of X, we cannot obtain the exact V matrix that

is dependent on X. In the recent work [Dai and Sun (2015)], an IRM method was proposed

to gradually minimize the rank of X. At each step, we try to optimize the original objective

function while at the same time minimizing the weighted parameter r such that, when r = 0,

the rank one constraint on X will be satisfied. The relaxed problem we are solving at each

iteration step, k, of IRM is formulated as a convex optimization problem in the form of



www.manaraa.com

21

J = minXk,rk 〈Xk, Q0〉+ wkrk

s.t. 〈Xk, Qj〉 ≤ cj , ∀ j = 1, ...,m, (3.11)

Xk � 0

rkIn−1 − Vk−1XkVk−1 � 0,

where w > 1 is the weighting factor for rk. Obviously, the solution at the converged point

satisfies the rank one constraint on X as well as other constraints described in the equivalent

QCQP problem. Through the Karush-Kuhn-Tucker conditions [Borwein and Lewis (2010)], we

then have attained linear convergence to at least a local optimum of the proposed IRM method.

More detailed derivation and proof of linear convergence can be referred to the past work [Dai

and Sun (2015); Sun and Dai (2015)].

Different from the NLP, method which can be applied to solve general nonlinear optimiza-

tion problems, the IRM algorithm above does not require initial guess of the unknown variables.

The IRM algorithm is initiated by solving problem (3.10) without considering the rank con-

straint to obtain V0 from X0 for k = 0. It then iteratively solves problem (3.11) to obtain Xk

and update Vk until rk ≤ δ, where δ is a stopping threshold. Furthermore, except the newly

introduced variable rk, there is no extra introduced unknown variable in the formulation. This

simple procedure can be easily implemented for any general QCQP problem. Along with the

quadratic formulations of UAV fight kinematics and the binary decision parameters, the IRM

method is applied here to solve the multi-waypoint path planning problem.
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CHAPTER 4. PATH PLANNING FOR INFORMATION GATHERING

USING SOLAR-POWERED UNMANNED GROUND VEHICLES

This chapter focuses on surveillance mission planning and power management of a solar-

powered Unmanned Ground Vehicle (UGV). The task of the UGV is to maximize the ex-

ploration of an unknown region to gather information from the environment via on-board

equipment. Meanwhile, the UGV is required to utilize the ambient solar energy from the envi-

ronment and operate under specified net energy constraint within a limited traveling time. The

modified Rapidly-Exploring Random Tree (RRT) methods is proposed to search for a locally

optimized path for the assigned mission.

4.1 Problem Formulation

Consider a solar-powered UGV with known performance characteristics which must survey

as much of a two-dimensional area as possible, such as a field or other area of interest, in

a predetermined allotted time. Given priori knowledge of the solar energy distribution of the

area, the UGV must survey this area in such a way where the UGV’s total energy expenditure is

less than or equal to what is gained via the environment. This UGV’s movement is governed by

four differential drive primitives (forward, backward, clockwise rotation, and counterclockwise

rotation), which is defined as a Balkcom-Mason curve [Balkcom and Mason (2002)]. The UGV

travels a path defined by n waypoints, n− 1 line segments, and n− 1 rotations, which can be

seen in Figure 4.1.

For this problem, the information in the area is a set of nodes that cover the area in a way

inspired by FCC structures of metals. However, to ensure that all the area is given value in the

problem, the circles are overlapped more than the actual FCC structure will allow. Figure 4.2

shows an idealized version used in our implementation compared to a true FCC structure.
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Figure 4.1 Example of Differential-Drive Motion Plan.

Figure 4.2 Actual FCC Structure (Left) vs. Ideal Structure (Right).

Having the nodes uniformly placed in the area, all with equal weighting of importance, the

percent information gathered from the area can be found by finding the nodes that are a within

a specified distance, r, defined as the detection radius and for our problem only slightly larger

than the platform area of the UGV. This can be mathematically defined as

Informationgathered =

∑#ofNodes
i=1

∑n−1
j=1

(
|ajxi+bjyi+cj |√

a2j+b2j
≤ r
)

# of Nodes
× 100 (4.1)

where ax + by + c = 0 is the equation of the line in slope-intercept form and (xi, yi) is the

coordinate of the information node, and n is the number of waypoints in the path. Alternatively,

a more traditional approach to the information problem, is determining how much area is

covered by the vehicle. In the same way that the information gathered in the nodal method,

the same detection radius, r, is used. The detection radius is used to bound the path and

determine how much area is covered by the rover along its path. Along each portion of the
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path, area that is covered multiple times or that is outside of the area of interest, must be

subtracted out. To begin to determine the area coverage, the area the circles centered on each

waypoint can be found

AA = n(πr2) (4.2)

where n is the number of waypoints and r is the detection radius. Then for every line segment

the distance of the path can be used to easily obtain the area between the two waypoints,

ensuring that the circles are not included

AB =

n−1∑
i=2

(2rdi − πr2) (4.3)

where n is the number of waypoints and d is the distance between the two waypoints. Next,

the area that is repeated or outside the area can be determined. The overlap from turning can

be calculated as

AC =
n−2∑
i=2

[
r2 sin(π2 −

αi
2 )

sin αi
2

− πr2π − αi
2π

]
(4.4)

Finally, the portion of the initial waypoint that is outside the bounds can be found as

AD =
1

2
r2
[ sinα1

sin(π2 − α1)
+

sin(π2 − α1)

sinα1
− π

]
(4.5)

where α is the turning angle. Finally, the total area covered can be found from the summation

of each area

ATotal = AA +AB −AC −AD (4.6)

An example of this idea can be seen in Figure 4.3

The time required for the UGV to complete its motion plan from the starting point

W1(x1, y1) to the ending point Wn(xn, yn), is denoted by TTotal. TTotal is defined as the sum

of the time required to complete each rotation and line segment of the motion plan, which is

mathematically defined as

TTotal =

n−1∑
i=1

(T r(i) + T l(i)) (4.7)

where the superscripts ’r’ and ’l’ denote the rotation and linear segment, respectively, i is the

index of segment, and n is the total number of waypoints including the starting and ending
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(a)

(b)

Figure 4.3 Explanation of Area Subtraction (Left) and Example of Path with Area Coverage

(Right)
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points. For each rotational and linear segment, the corresponding average angular speed ω(i)

and linear speed V (i), the TTotal can be further written as

TTotal =
n−1∑
i=1

(α(i)

ω(i)
+
β(i)

V (i)

)
(4.8)

where α(i) is the change in heading direction from the current to the next prescribed heading

and β(i) is the length of the line segment i.

The energy gathered by the UGV’s solar panel, Ein, is dependent on the solar panel’s surface

area denoted as Spanel , and the environment’s solar energy density, denoted as Rin(x, y). The

environment’s solar energy density, Rin(x, y), is a scalar field interpolation constructed from

discrete solar energy samples. To calculate the energy gathered along the path, Q, equidistant

spaced samples over the line to determine the average energy strength. For rotational segments,

the available energy density may be approximated as that at the location of the turn. From

this, the energy gathered along each segment is expressed as

Elin(i) =

Q∑
k=1

Rin(xk, yk)
Spanelβ(i)

V (i)Q
(4.9)

Erin(i) = Rin(x(i), y(i))
Spanelα(i)

ω(i)
(4.10)

The energy consumed by the UGV to complete each portion of the motion plan is deter-

mined by the engine consumption rate P le(i) and P re (i), for the linear and rotational segments

respectively, the passive power, which is defined to be the power allocated to the microcon-

troller, wireless sensor, and idle power (denoted by Ppassive), and the TTotal . From these defined

characteristics, the consumed energy can be represented by

Elout(i) = (P le(i)ne + Ppassive)T
l(i) (4.11)

Erout(i) = (P re (i)ne + Ppassive)T
r(i) (4.12)

where ne is the number of engines. Each engine consumption rate under linear and rotational

movements is a polynomial function of corresponding linear and angular speed, denoted as

P le(V (i)) and P re (ω(i)), respectively. These polynomial functions were characterized during

experimental testing. The strict net energy constraint imposed over the entire path, net energy
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gain during the motion plan is above zero, can be expressed as

n−1∑
i=1

(Elin(i)− Erin(i)) ≥
n−1∑
i=1

(Elout(i) + Erout(i)) (4.13)

At any time along the path, the UGV’s power for its components may be supplied from

either the gained energy from the environment or from the on-board battery denoted as Pb.

In other words, if the power provided by the UGV’s solar panel is less than is required by

the motors and systems, the power will be drawn from the on-board battery. Following, any

excess energy supplied from the solar panel will be stored in the on-board battery, as long as

the batterys energy is within its minimum and maximum values, Pbmin
and Pbmax . With this,

the power balance relationship is formulated as

P le(i)ne + Ppassive + P lb(i)−
Q∑
k=1

Rin(xk, yk)
Spanel

Q
= 0 (4.14)

P re (i)ne + Ppassive + P rb (i)−Rin(x(i), y(i))Spanel = 0 (4.15)

where Pbmin
≤ P lb(i) ≤ Pbmax and Pbmin

≤ P rb (i) ≤ Pbmax .

The motion planning problem for the information gathering UGV with net energy constraint

can be summarized as an optimization problem in the form of

maxx(i),y(i),ω(i),V (i)Nodegathered or ATotal

s.t.
∑n−1

i=1 (T r(i) + T l(i))− 60 ≤ 0∑n−1
i=1 (Erin(i) + Erout(i)) +

∑n−1
i=1 (Elin(i) + Elout(i)) ≥ 0

P re (i)ne + Ppassive + P rb (i)−Rin(x(i), y(i))Spanel = 0 (4.16)

P le(i)ne + Ppassive + P lb(i)−
∑Q

k=1Rin(xk, yk)
Spanel

Q = 0

Pbmin
≤ P rb (i) ≤ Pbmax

Pbmin
≤ P lb(i) ≤ Pbmax

where the variables to be optimized are the coordinates of n − 1 waypoints (x(i), y(i)), i =

2, ..., n − 1, and the n1 linear speeds V (i) and angular speeds ω(i) along each segment i, i =

1, ..., n− 1.
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4.2 Constrained RRT Algorithm Formulation

This section intends to approach the mission planning problem from a stochastic sampling

and exploring aspect. The Rapidly-exploring Random Tree (RRT) algorithm from Lavalle

has been modified to serve a better purpose for mission scheduling and path planning of the

solar-powered UGV with constrained net energy and traveling time [Lavalle (1998)]. Before

discussing the algorithm, it is essential to recognize the mission planning problem and introduce

a few necessary procedures implanted in the algorithm.

The environment with solar energy density distribution is denoted as Rin where Rin ⊂ Rn.

Let S represents the unexplored domain and S ⊂ Rin. The environment is assumed to be

obstacle-free and the rover starts at a given initial position, zinitial. The RRT algorithm would

solve the constrained mission planning problem by searching through the region S with node

sampling in order to construct a Rapidly-exploring Random Tree, Tree. Furthermore, each

branch from Tree would be examined respectively to yield a feasible path, Path, which satisfies

all the given requirements.

Sample: The Sample function returns a state, znew, that randomly samples from the desired

field. The sampling process is assumed to be uniformly distributed while selecting nodes in the

field, such that znew ∈ S (Alg. 1, line 4). The coverage of every new sample is also restricted

by the radius of on-board sensor, r, to not exceed the boundaries of the environment while

sampling.

Near : The Near function evaluates the new sample and the current tree, then determines

a node, znear, where znear ∈ Tree that offers the shortest connecting distance of being the

potential parent for znew.

EnergyOptimal : Given the solar energy distribution of the environment and the necessary

parameters for motion of the rover, the EnergyOptimal function determines a favorable PWM

associating with speed and duration that maximizes the net energy towards +∞ for either

turning or going straight actions.

Coverage: This procedure adopts the calculation of area coverage discussed in section IV

with the input of waypoints for the path.

Algorithm 1 outlines the general structure of the RRT algorithm used in this paper. The
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tree begins with zinitial and a blank path. A coordinate znew is generated by stochastic sampling

the design space (Alg. 1, line 4). It then determines its potential parent znear (Alg. 1, line 5)

and recruits the available znew for tree extension (Alg. 1, line 6). A set of angular and linear

maneuvers would need to be characterized once a new node is added. The turning angle, α,

for the first rotational motion at znear is computed by TurningAngle function where α ∈ [0, π2 ]

due to the rover is capable to perform revise driving (Alg. 1, line 7). The Distance function

calculates the path length, β, from znear to znew for the following straight line movement (Alg.

1, line 8). The estimation of intake solar energy and battery consumption during operations

are measured by EnergyOptimal function from E to evaluate the required velocity, length of

time, and outcome net energy when the rover reaches znew (Alg. 1, line 9-10). While every time

a znew is added, a new branch, I, is expanded from zinitial to znew and assessed with traveling

time and total energy requirements (Alg. 1, line 15-16). After sufficient iterations, the branches

that passed the thresholds competing with each other and producing one best branch as Path

which provides the maximum area coverage of all branches (Alg. 1, line 17-20).

Figure 4.4 Example of constrained RRT steps.
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Algorithm 1: The Constrained RRT Algorithm

1 INPUT: zinitial ← (x0, y0), r ← Detection Radius, PWMturn ← [turnmin, turnmax],

PWMline ← [linemin, linemax], Ppassive ← Power Passive, Spanel ← Solar Panel Size,

Rin ← Solar Energy Insolation Map,K ← Limitation of Traveling Time

2 Initialize: Tree← {zinitial}, turn← {}, line← {}, time← {}, energy ← {}, I ← {},
ATotal = 0, Path← {}

3 for i = 1, ..., n do

4 znew ← Sample(S, r)

5 znear ← Near(znew, T ree)

6 Tree← Tree ∪ {znew}
7 α← TurningAngle(znew, znear, T ree)

8 β ← Distance(znew, znear)

9 (turnPWM, turnvelocity, turntime, turnenergy)←
EnergyOptimal(α, Ppassive, PWMturn, Rin)

10 (linePWM, linevelocity, linetime, lineenergy)←
EnergyOptimal(β, Ppassive, PWMline, Rin)

11 turn← turn(znear) ∪ {(turnPWM, turnvelocity)}
12 line← line(znear) ∪ {(linePWM, linevelocity)}
13 time← time(znear) + turntime + linetime

14 energy ← energy(znear) + turnenergy + lineenergy

15 I ← I(znear) ∪ {znew}
16 if time ≤ K and energy ≥ 0 then

17 A′Total ← Coverage(I)

18 if A′Total > ATotal then

19 Path← I

20 ATotal ← A′Total

21 return Path
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Figure 4.5 Flowchart of constrained RRT steps.
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CHAPTER 5. PATH PLANNING OF A MULTI-ROBOT TEAM WITH

A SOLAR-POWERED CHARGING STATION

This chapter presents a mission planning problem for a cooperative team of unmanned

ground vehicles (UGVs), which includes multiple rovers and a solar-powered mobile charging

station. The team is required to start at an initial point and visit a series of objective points

before arriving at the final point selected from the set of objective points, where the UGVs

will be charged from the solar-powered mobile charging station. This mission is represented

as a multi-Hamiltonian Path Problem (mHPP). In order to effectively coordinate the team,

an understanding of the mission environment is first obtained by generating a scalar field

representation of the solar insolation of the environment from a visual-spectrum image. Then, a

cascaded heuristic optimization (CHO) algorithm, using modified genetic algorithm and particle

swarm optimization, is used to generate a time-optimized mission plan for the team of UGVs,

which guides each UGV to its assigned objective points and then rendezvous at the final

charging location while guaranteeing compliance with the net energy gain constraint.

5.1 Problem Formulation

Consider a cooperative team of m UGVs, of known performance characteristics, where one

of the UGVs is equipped with a solar-panel and has the capability of harvesting solar energy

and charging the other UGVs. This vehicle is referred as a solar-powered, mobile charging

station with index z = 1. All other vehicles, indexed by z = 2, ...,m, are classified simply as

worker UGVs. The mission assigns a number of objective points where each objective point can

only be visited by one UGV, except the beginning and final points. The team is also required

to select one of those objective points and rendezvous at this final destination to charge all

worker UGVs. The entire mission is required to be completed with minimum time. In order
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to enable persistent operation in the environment, each vehicle’s net energy gain is required to

be greater than or equal to zero once the mission is complete.

With the involvement of a solar-powered mobile charging station, the UGV team has more

flexibility of accessing external power supply without distance constraint. On the other hand,

the worker UGVs in smaller size has more mobility when traveling to limited spaces without the

top-mounted large solar panel. Furthermore, the charging station can also act as a worker UGV

to visit objective points during energy harvesting. Thus, the cooperation of heterogeneous UGV

team is capable of performing more challenging tasks with less dependence on power supply.

The optimal mission planning problem for the above described UGV team is similar to the

mHPP with additional dynamical and mission constraints. The mHPP can be described by a

complete graph G which consists of a set of objective points, O = O{1,...,n}, where n ≥ m+ 2,

and a set of edges, E, with edge cost representing the time required for a UGV traversing the

corresponding edge. Let D be the depot point 1 such that O = D ∪ O′ and Ok be the final

location k of all m UGVs, and cij,z be the binary variable representing if a UGV with index z

joins the two points i and j. Then, the mHPP can be formulated as

minG(O,E) (5.1)

s.t.
∑

i∈O′ c1i,z = m (5.2)∑
i∈O′ cik,z = m, k ∈ O′ (5.3)∑

i∈O cij,z = 1, j ∈ O′, i 6= j, j 6= k, ∀z = 1, ...,m (5.4)∑
j∈O cij,z = 1, i ∈ O′, i 6= j, i 6= k, ∀z = 1, ...,m (5.5)

c1i,z + cik,z ≤ 1,∀i ∈ O′,∀z = 1, ...,m (5.6)

cij,z ∈ {0, 1},∀i, j ∈ O,∀z = 1, ...,m. (5.7)

Constraints (5.2) and (5.3) guarantee that all m vehicles start at point 1 and end at point k.

Constraints (5.4) and (5.5) impose that one objective point can only be visited once, except for

the depot and final locations. Constraint (5.6) ensures that each UGV must visit at least one

objective point which is not the depot and final location. The binary constraint (5.7) cij,z = 1

represents the edge is visited by UGV z, and cij,z = 0 otherwise. An example of this problem

for three UGVs and nine objective points is illustrated in Fig. 5.1.
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Figure 5.1 An example for a mHPP with three UGVs and nine objective points where path

of UGV 1 is solid, UGV2 is dash-dot, and UGV 3 is dash.

The above mHPP does not consider vehicle dynamics and power constraints. In the multi-

robot team, each UGV’s movements are governed by the four differential-drive primitives of

a Balkcom-Mason curve [Balkcom and Mason (2002)], as shown in Fig. 5.2. In this way, the

dynamical model for each UGV can be described below. The time spent by UGV z to visit the

nz assigned waypoints is denoted as Ttravel,z, which includes the time consumed by the nz + 1

turns, denoted by T rz , and nz line segments, denoted by T lz,

Ttravel,z =

nz+1∑
i=1

T rz (i) +

nz∑
i=1

T lz(i), z = 1, ...,m. (5.8)

Figure 5.2 An example of Balkcom-Mason curve path.
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Along each turn, i = 1, ..., nz + 1, and line segment, i = 1, ..., nz, the UGV z will move

at an angular and linear speed, denoted by ωz(i) and Vz(i), respectively. These speeds will

be constant for worker UGVs. However, the mobile charging station has more flexibility to

determine its speeds from the motion planning strategy. Thus, Ttravel,z, can be expressed as

Ttravel,z =

nz+1∑
i=1

(
∆θz(i)

ωz(i)
) +

nz∑
i=1

(
Lz(i)

Vz(i)
), z = 1, ...,m, (5.9)

where ∆θz(i) is the required change in angle from the UGV’s present heading to the new

heading before moving straight to the next waypoint, and Lz(i) is the length of line-segment i.

For each movement, the UGVs must allocate sufficient power to their engines to maintain

the consumption rates for the duration of each line-segment and turn, denoted by P le,z(i) and

P re,z(i), respectively, in addition to a constant power drain from the vehicles’ microcontroller

and other components, collectively denoted as the passive power draw, Pa. Each movement for

UGV, z = 1, ...,m, is summarized as

Elout,z(i) = (P le,z(i)ne,z + Pa,z)T
l
z(i) (5.10)

Erout,z(i) = (P re,z(i)ne,z + Pa,z)T
r
z (i) (5.11)

where ne,z is the number of engines for the UGV with index z. The energy recovered throughout

the mission is unique for the workers and charging station. For the worker UGVs, it can be

expressed as,

Ein,z = CrateTcharge,z, z = 2, ...,m, (5.12)

where Crate is the charging rate, which is hardware dependent, and Tcharge is the required

amount of time to charge the battery. The energy recovered by the charging station with index

z = 1 is determined by the solar panel’s surface area, Sa, and the available solar energy Rin.

For a line segment, the available energy is calculated by sampling over the line segment at Q

equidistantly spaced points to determine the average energy density along the line, Rin(xq, yq),

where q = 1, . . . , Q. While for a turn, the available energy density is simply approximated as

the location of the turn, Rin(x(i), y(i)), i = 1, . . . , n1 + 1. Under these assumptions, the energy

harvesting amount for the mobile charging station along the turn and line-segment is expressed

as
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Elin,1(i) =

Q∑
q=1

Rin(xq, yq)SaL1(i)/(V1(i)Q) (5.13)

Erin,1(i) = Rin(x(i), y(i))Sa∆θ1(i)/ω1(i). (5.14)

In order to achieve persistent operation, the strict net energy constraint imposed over the

entire mission is expressed as

∆Etotal,1 =

n1+1∑
i=1

(Erin,1(i)− Erout,1(i))

+

n1∑
i=1

(Elin,1(i)− Elout,1(i)) ≥ 0.

∆Etotal,z =−
nz+1∑
i=1

(Erout,z(i))

−
nz∑
i=1

(Elout,z(i)) + Ein,z ≥ 0, ∀ z = 2, ...,m.

At any instance during the operating period, each UGV must be capable of maintaining

operation by obtaining power from its on-board battery, Pb,z or external sources. The worker

UGVs, z = 2, ...,m, can only obtain energy from the charging station with the power balance

relationship expressed as

P le,z(i)ne,z + Pa,z + P lb,z(i) = 0, i = 1, . . . , nz, (5.15)

P re,z(i)ne,z + Pa,z + P rb,z(i) = 0, i = 1, . . . , nz + 1. (5.16)

For the solar-powered mobile charging station, power is first drawn from the solar panel. If

the power provided from the solar panel is less than the power required to maintain the UGV’s

operation, the on-board battery will supplement the rest of the power. On the other hand, if

there is excess power provided by the solar panel, the remaining will be stored in the on-board

battery. This relationship for both linear and rotational segments of the charging station with

z = 1 is formulated as
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P le,1(i)ne + Pa,1 + P lb,1(i) =
∑Q

q=1Rin(xq, yq)Sa/Q,

i = 1, . . . , n1 (5.17)

P re,1(i)ne + Pa,1 + P rb,1(i) = Rin(x(i), y(i))Sa,

i = 1, . . . , n1 + 1. (5.18)

Lastly, the battery of each UGV must stay within its minimum and maximum values,

denoted by Pbmin,z and Pbmax,z, respectively. Hence, for any z = 1, . . . m, it satisfies the

following constraints such that

Pbmin,z ≤ P
l
b,z(i) ≤ Pbmax,z, i = 1, ..., nz

Pbmin,z ≤ P
r
b,z(i) ≤ Pbmax,z, i = 1, ..., nz + 1.

Accordingly, the multi-robot mission planning problem can be summarized as a parameter

optimization problem in form of

minX

m∑
z=1

(
nz+1∑
i=1

T r(i) +
nz∑
i=1

T l(i)) + Tcharge (5.19)

s.t cij,z ∈ constraints in (5.2)− (5.7)

∆Etotal,z ≥ 0, z = 1, . . . ,m

P le,1(i)ne,1 + Pa,1 + P lb,1(i)−
Q∑
q=1

Rin(aq, bq)As/Q = 0

P re,1(i)ne,1 + Pa,1 + P rb,1(i)−Rin(x(i), y(i))Sa = 0

P le,z(i)ne,z + Pa,z + P lb,z(i) = 0, z = 2, . . . ,m

P re,z(i)ne,z + Pa,z + P rb,z(i) = 0, z = 2, . . . ,m

Pb,zmin
≤ P lb,z(i) ≤ Pb,zmax

, z = 1, . . . ,m

where the optimization variable set X include the binary set {cij,z} which determines objective

points assigned to each UGV, the visiting sequence of assigned objective points, and the final

rendezvous location for charging. The remaining design variables in X are the corresponding

linear and rotational velocities Vi,z, i = 1, . . . , nz and ωi,z, i = 1, . . . , nz + 1 for each UGV z =

1, ...,m. The mission planning problem in (5.19) including both continuous and binary design
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variables and nonlinear constraints are complicated, requiring a specially designed algorithm

to search for an optimized solution.

5.2 Cascaded Heuristic Optimization Method

5.2.1 Genetic Algorithm

GA, developed in the 1970’s, is an adaptive heuristic algorithm based in the larger class of

evolutionary algorithms [Holland (1975)]. GAs employ a population of N individuals, named

chromosomes, which are encoded to represent a possible solution to a problem usually in binary

or decimal form. Extending the genetic analogy, each chromosome is composed of i genes, or

variables. For each generation, or iteration, of the GA, a new set of N individuals are generated

from the previous generation. This process is completed in three steps that simulates the evo-

lutionary and survival of the fittest process: (1) selection, (2) cross-over, and (3) mutation. As

generations continue, GAs intelligently explore a design space using a random search, exploiting

historical information to direct the search towards regions of space with higher performance.

Due to the great number of binary design variables involved in the mission planning problem,

GA is elected to determine the binary set {cij,z} first by encoding them as a single chromosome.

5.2.2 Particle Swarm Optimization

PSO is a population based stochastic heuristic optimization method which was developed

in 1995 [Eberhart and Kennedy (1995)]. PSO simulates the social behavior of animals, such as

birds or fish, by creating N groups of potential solutions, or particles, each being composed as

a particular solution set to the optimization problem in form of

Pn = [xn1 , x
n
2 , . . . , x

n
d ], ∀n = 1, . . . , N. (5.20)

At each iteration, the N particles are perturbed by a distance, D, that is determined based

on the particle’s best known solution, PBEST and the population’s best performing solution,

GBEST . This movement, D, can be adjusted by the user-defined weights, C1 and C2, that

determine the importance of moving towards PBEST and GBEST . In order to effectively search

the design space, the movement D are also multiplied by a pseudorandom number R between
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0 and 1. PSO used in this paper also takes into account the previous iteration’s movement

Dj
i (t − 1) multiplied by an inertia factor I, 0 ≤ I ≤ 1, which is a common method to reduce

the chances of being trapped in a local minimum, such that

Dn
i = IDn

i (t− 1) + (C1R(PnBEST i
− Pni ))

+(C2R(GBEST i − Pni )). (5.21)

After each perturbation, the n = 1, . . . , N particles’ fitness is re-evaluated against the problem’s

performance index. If appropriate, the particle’s new solution replaces the previous PBEST

and/or GBEST values. As iterations continue, the GBEST will approach an optimal solution

set. Due to the high computational performance of handling nonlinear constraints, PSO is

elected to search for continuous design variables in the energy-constrained mission planning

problem.

5.2.3 Cascaded Heuristic Optimization Method

The mission planning problem requires that all objective points, Oj(xj , yj), j = 1, ..., k,

are visited by only one UGV, except for the starting location and the final charging location.

Accordingly, a CHO algorithm is proposed to solve the energy-constrained mHPP formulated

in §II. The CHO will first allocate the objective points among UGVs, the visiting sequence of

assigned point for each UGV, and the final charging location, through the use of a GA. Then,

we will design linear and angular velocities, Vi,z, i = 1, ..., nz and ωi,z, i = 1, ..., nz + 1 for

z = 1, ...,m along the path segments with a modified PSO.

Our first step is to determine the binary set {cij,z}, which represents objective points that

each UGV will visit, the visiting sequence, and the final charging location. Due to the involve-

ment of a great number of binary variables, GA is elected to solve for the optimal path orders for

each vehicle simultaneously, while still being able to incorporate the non-linearity of the solar

insolation map for the purpose of energy harvesting. For a mHPP with homogeneous UGVs,

the objective of the GA is to minimize the time to complete the mission. Then, the motion

planning problem without a charging station would simply be searching the overall minimum

distance the UGV team must travel. However, when involving a solar-powered UGV to harvest

as much as energy as possible while working with other UGVs, the objective becomes a hybrid
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function composed of distance and collected energy per distance. We elect to apply a weighted

objective function to incorporate the performance index of the solar-powered charging station,

expressed as

min
m∑
z=2

dtotal,z − w
n−1∑
i=1

Elin,1(i) + Erin,1(i)

dtotal,1
, (5.22)

where Elin,1(i) and Erin,1(i) are defined in (5.13) and (5.14), respectively, and w is a user specified

weighting factor.

To solve this problem using a GA, each portion of the problem must be represented in every

chromosome. To accurately and efficiently represent each portion, a three-part chromosome

is utilized containing the charging location, the objective points, and how many and which

objective points are assigned to each vehicle, as shown in Fig. 5.3. The three-part chromosome

used in this paper is an extension of the work completed by Carter [Carter and Ragsdale (2006)]

that verifies a two-part chromosome outperformed the two chromosome representation for a

MmTSP. By representing the problem in this way, all information required to obtain a fitness

value for the particular chromosome is contained in a single array.

The GA developed in this paper uses the tournament selection approach, which selects a

subset of the population and then selects the fittest member of the population. Instead of

using a single point crossover for the objective point crossover, we implemented an ordered

crossover [Goldberg (1989)], which is one of the fastest crossover operators, requiring limited

overhead operations. The working mechanism of ordered crossover is to select n consecutive

Figure 5.3 Example of the three-part chromosome representation for a 10-point mHPP with

a three-UGV team.
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Figure 5.4 Example of Order 1 cross over with the three-part chromosome.

genes within one of the parents, which are represented by bolded and underlined numbers in

Fig. 5.4, to be dropped down to the child. Then, the remaining values are placed in the child

in the order that they appear in the other parent. For the charging location and the number

of objective points assigned to the vehicle, these values from the parent that has the highest

fitness are selected to be passed on to the child. However, a weighting is applied so that there

is a chance that the values from the other parent are used instead. This offers some variability

and random chances to help from being trapped in a local minimum. Lastly, for a small subset

of the population, mutation is completed by randomly swapping two objective points, which

also prevents becoming trapped in local minimums.

Next, a modified PSO is used to determine the linear and rotational speed along each

segment of the optimized path. A set of k candidate solutions are pseudorandomly initialized

as

P k = [V k(1), . . . , V k(nz), ω
k(1), . . . , ωk(nz + 1)]. (5.23)

Throughout the optimization process the particles are constrained by the physical limitations

of the vehicles, Vmin < V k < Vmax and ωmin < ωk < ωmax, as well as the constraints stated in

(5.19). The objective function for this optimization process is the one specified in (5.19). As the

particles are perturbed through each iteration, the particles will converge to an optimal solution

that meets all constraints applied to the system. In the event that the initialization does not

provide a particle that satisfies the net energy constraints, the particles will be reinitialized. A

summary of the proposed CHO method is shown in Fig. 5.5.
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Figure 5.5 Flowchart of the proposed CHO method
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CHAPTER 6. SIMULATION AND EXPERIMENT RESULTS

This chapter contains the virtual simulations and experimental results for constrained path

planning of unmanned vehicles problems discussed in previous chapters. Section 6.1 presents

simulated results of refined RRT* in Chapter 2 for single and multiple avoidance zones cases and

a benchmark comparison to address the performance of heuristics method. The simulations for

multi-waypoint and decision parameter methodology posted in Chapter 3 are shown in Section

6.2. In Section 6.3 and 6.4, both computer simulations and experimental data are included for

information gathering and multi-rover with charging station problems from Chapter 4 and 5,

respectively.

6.1 Path Planning Of Unmanned Aerial Vehicles with Avoidance Zones

In this section, a group of simulation cases are presented to demonstrate the advantages and

limitations of the proposed approach and compared with an Iterative Rank Minimization (IRM)

approach [Sun and Dai (2015)]. In the first case, one avoidance zone is considered and the path

planning problem for this simple case has an analytical solution as a reference to verify the

accuracy of proposed approaches. Other cases consider a group of cluttered avoidance zones,

which makes the path planning problem more difficult. In both types of cases, the parameters

in the IRM method are set as [x0, y0] = [0, 0]T , [xf , yf ] = [10, 10]T , V = 1, umax = 0.2, w = 1.5,

and ε = 1e − 4 as the threshold for the convergence of r. All cases use 25 discrete nodes to

represent the planned path. The corresponding parameters in the refined RRT* method are

set as dmin = 0.3 and θ = 150◦. All of the simulation cases are run on a desktop computer

with a 3.50 GHz processor and of 16 GB RAM.
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6.1.1 Case with One Avoidance Zone

The single avoidance zone considered here is a circle centered at [5, 5] with radius of 5. The

analytical solution for this case yields a minimum flight time of f∗benchmark = 17.85. The optimal

solution from IRM is f∗IRM = 17.84. The relative error of the solution from IRM is only 0.066%

compared to the benchmark, which verifies the high accuracy of IRM. In addition, results

obtained from the NLP solver in MATLAB is provided. Groups of initial guesses are randomly

generated and a feasible path which yields a flight time of f∗NLP = 17.84 is demonstrated in

Figure 6.1(a). Therefore, the comparative results indicate that IRM and NLP both work in

solving this type of benchmark problems when converging to a local minimizer. The paths

obtained from IRM and NLP are demonstrated in Figure 6.1(a). It takes 10 iterations for the

IRM with threshold ε = 1e − 4 converging to the optimal solution. The overall computation

time for IRM is 202.90 seconds.

The planned paths from RRT* and refined RRT* are shown in Figure 6.1(b). The original

path from RRT* includes sharp turns at connections of sampling trees. Through refinement

steps, the refined path with flight time of f∗refined = 18.00 is very close to the planned path

generated from IRM. It takes 0.95 seconds to generate the coarse path from RRT*. The

refinement steps take additional 25.15 seconds to refine the coarse path. Although the refined

RRT* does not yield the same high accuracy compared to IRM, it has significant reduction on

computation time in this simple example.
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(a) Planned paths generated from IRM (dash) and NLP (solid) for case one

(b) Planned paths generated from modified RRT* (dash) and refined
RRT* (solid) for case one

Figure 6.1 Comparative results of planned path for case one.
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Moreover, as the dynamics equations are discretized, we present the results from different

N in Table 6.1. In this example, as we have N = 20 for it is already accurate enough.

Table 6.1 Comparative results for different N .

N 10 15 20 25

fbenchmark 17.85 17.85 17.85 17.85

fIRM 17.80 17.86 17.84 17.85

IRM Rel. Error/% -0.27 0.063 -0.066 0.0029

6.1.2 Cases with Multiple Avoidance Zones

A group of cluttered avoidance zones in the shape of circles and ellipses are considered in

the second case. The optimal solution from IRM is f∗IRM = 14.75, while the one from NLP

is f∗NLP = 16.02. Figure 6.2(a) shows the planned paths from IRM and NLP for this case.

The IRM converges to the optimal solution within 15 iterations and the overall computational

time is 1065.77 seconds. Due to the multiple avoidance zones, it is more difficult to find

a feasible path when using a random initial guess with the NLP method. Different from

case one where the paths from refined RRT* lead to a semi-uniform result with significantly

small differences, paths generated for case two fall into several branches, as shown in Figure

6.2(b). Among 350 simulation runs, only 5.43% simulations lead to a shortest path with

f∗refined = 14.93, which is consistent with the one obtained from IRM. However, most of the

simulations, with the probability of 79.71%, generate flight paths yielding f∗refined around 17.96

with ±0.001 difference. The remaining 14.85% simulations generate results with even larger

f∗refined. Although the random process is assumed to sample the distribution uniformly, it

is observed that the RRT is biased to generate more samples in larger spaces Choset (2007).

Thus the sampling trees are not likely to distribute vertices in narrow spaces, leading to the low

opportunity of producing the shortest outcome in case two. It takes an average of 10.88 seconds

to find the coarse path from RRT* and the average computation time to obtain the final path

considering refinement steps is 193.29 seconds. Compared with the simulation time of IRM,

the refined RRT* requires much less computation time without guarantee of optimality. For

the convenience for comparison, we listed the result from the three methodologies in Table 6.2.
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(a) Planned paths generated from IRM (dash) and NLP (solid) for case two

(b) Planned paths generated from refined RRT* for case two

Figure 6.2 Comparative results of planned path for case two.
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Table 6.2 Comparison for three algorithms.

Algorithm Parameter time/sec f∗ Remark

NLP SNOPT 20.76 16.02 Least time

IRM N = 25,w = 1.5,ε = 1e− 4 1065.77 14.75 (Equally best f∗)

Modified RRT∗ dmin = 0.3 10.88 -

Refined RRT∗ θ = 150◦ 193.29 14.93

To further verify advantages of the proposed methods, results of four additional cases are

demonstrated in Figure 6.3, where overlap between avoidance zones are considered. For each

case, the refined RRT* execute 15 simulation runs and the path yielding best performance is

provided in the corresponding plot to compare with those obtained from IRM. Among the four

cases, two of them generate very similar results and the remaining two lead to different paths

where flying time resorting from the IRM is slighter shorter than the corresponding results

from the best result of the refined RRT*.

All example cases indicate that the numerical optimization approach using the IRM method

achieves high performance with guaranteed convergence. However, at each iteration of IRM, the

additional semidefinite constraint, rkIn−1−Vk−1XkVk−1 � 0 in Sun and Dai (2015), introduces

(n − 1) × (n − 1) linear constraints, which results in significant increases of computational

time compared to the semidefinite relaxation formulated in Sun and Dai (2015). The heuristic

search based on refined RRT*, on the other hand, has faster convergence without guarantee of

optimality. In real applications, according to the mission definition, one of the approaches can

be selected to meet specific mission planning requirement.
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(a) Case Three (b) Case Four

(c) Case Five (d) Case Six

Figure 6.3 Planned paths generated from IRM (solid) and best result of refined RRT* (dash)

for cases three to six

Table 6.3 Comparison for four cases.

f∗IRM f∗refined (15 simulations) time of IRM(sec) time of Refined RRT∗(sec)

Case 3 15.73 15.92 1481.27 605.98

Case 4 14.86 15.29 1879.19 184.39

Case 5 14.43 14.52 424.83 212.24

Case 6 14.52 15.42 1124.73 188.90
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6.2 Path Planning Of Unmanned Aerial Vehicles with Multi-Waypoint and

Decision Parameter

In this section, several simulation cases are presented to demonstrate the capability of

proposed method. In the first case, a simple multi-waypoint path planning problem with

only two stops are considered. This example verifies the proposed approach is practical and

successful. The second case considers a much more complex situation while the coordinates of

four waypoints are provided substantially increasing the difficulty of the path planning problem.

This example is also compares the performance with the combination of the Traveling Salesman

Problem (TSP) toolbox and Nonlinear Programming (NLP) solver in MATLAB. In both cases,

the parameters in IRM method are set as [x0, y0] = [0, 0]T , V = 1, umax = 0.5, and M = 125.

All sections are discretized into 5 nodes as the total number of nodes is 5n + 1 where n is

the number of sections. All simulation cases are run on a desktop computer with a 3.50 GHz

processor and 16 GB RAM.

6.2.1 Two Waypoints Path Planning

The two given waypoints the UAV needs to pass by are [0.4, 3] and [2.9, 2.9]. The optimal

flight time from decision parameter method is f∗IRM = 6.011 with overall computation time of

419.271 seconds. With two waypoints, the flight path is assembled by two continuous sections

each containing 5 nodes, with 11 nodes in total included the starting point. The feasible

trajectory generated from decision parameter method is shown in Figure 6.4. The result flight

path validated the decision parameter method is able to produce a fairly smooth curve even

with very small amount of discretized nodes representing each flight path section, yet, still keep

the continuity of entire route.

6.2.2 Complex Waypoints Path Planning

The sequence of multiple waypoints in a simple situation can be determined without much

computation. The complex multi-waypoint situation considered an initial point and four way-

points given as [−1.089,−1.677], [3, 0], [3.109, 2.517] and [−2.113, 4.532] where the sequence is
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Figure 6.4 Simulation results of two waypoints situation.

no longer obvious. The proposed method was examined for the robustness and compared to a

combined method that evaluates the sequence and kinematics of UAV individually.

The same condition was solved by a combined method of TSP toolbox and NLP solver

in MATLAB. The combined method first analyzes the shortest closed tour from the given

waypoints as a traditional TSP. The relatively longer link among the two that connect to the

starting point is eliminated, and the sequence can be formed. Then, the NLP solver computes

the flight path for each section regarding to the sequence from TSP and overall constraints.

Figures 6.5-6.6 show the paths generate from two approaches. The flight time performance

from the decision parameter method is f∗IRM = 18.848 while the one from combined method

is f∗combined = 20.691. The two method applied different sequence along with the trajectory of

UAV. As utilizing shortest distance calculation of TSP, the combined method began the trip

from the waypoint closest to the origin and produced a complete flight path. On the other

hand, the decision parameter method used the route that is eliminated by TSP and generated

a path that outperforms the combined method.

However, the trajectory from decision parameter method for complex condition is not as

smooth as the simple condition, especially at the longer distance section. This can be improved
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by increasing the number of discretized nodes to gain more flexibility, and potentially achieve

better solution than using less discretized nodes. The computation time gradually increases

when the number of waypoints and the number of discretized nodes increase.

Figure 6.5 Simulation results of four waypoints situation with decision parameter method.

Figure 6.6 Simulation results of two waypoints situation with combined method.
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6.3 Path Planning For Information Gathering Using Solar-Powered

Unmanned Ground Vehicles

This section presents one real-world test environment, which was described in Kingry and

Liu (2017). The area contains three high pressure sodium lights randomly placed in the 3.8

× 1.31 m2 area, shown in Figure 6.7. The solar energy density distribution is mapped, and

the modified RRT algorithm is used to generate motion plans and compared with a modified

PSO algorithm. The resulting motion plans were then executed by the demonstration vehicle

(Figure 6.8), described previously, five times each.

Figure 6.7 Indoor Testing Environment.

Figure 6.8 Demonstration Vehicle with 18W Solar Panel.
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The optimized path, predicted variable history, and the recorded experimental data for

the RRT is shown in Figures 6.9,6.10 and for the PSO shown in Figures 6.11, 6.12, where

the predicted power harvested, PIN is represented as ( ), the power consumed, POUT, as

( ), and the change in battery energy, ∆Battery, as ( ). The corresponding recorded

experimental data is denoted as PIN ( ), POUT ( ), and ∆Battery ( ).

The anticipated travel time for the RRT motion plan was 57.07 seconds with a net energy

increase of 10.26 J that covered 49.57% of the area, while the average experimental travel time

was 56.23 seconds with an average net energy increase of 6.14 J . In comparison, the anticipated

travel time for the PSO motion plan was 58.61 seconds with a net energy increase of 2.65 J

that covered 62.5% of the area, while the average experimental travel time was 58.40 seconds

with an average net energy increase of 4.516 J .

From the experimental data trials for both motion plans, the runtime match very closely

with the predicted, only having errors of 1.47% and 0.358%, respectively for the RRT and PSO

implementations. The experimental net energy of both motion plans are either slightly higher

or lower than the predicted. These deviations from the predictions may be contributed by the

vehicle’s small deviations from the planned path. These deviations are due to the high-pressure

sodium lights emitting near infrared light and conflicting with the VICON motion capture

system used to determine the UGV’s orientation and position in the testing environment,

which result in an average 1.06% error in distance traveled and 0.80% error in angle turned.

Measurement error in the voltage/current sensors, at worst ±0.79%, could also contribute to

the small experimental deviations observed.
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Figure 6.9 Constrained RRT Optimized Path Plan.

Figure 6.10 Constrained RRT Optimized Energy Schedule.
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Figure 6.11 PSO Optimized Path Plan.

Figure 6.12 PSO Optimized Energy Schedule.
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6.4 Path Planning Of A Multi-Robot Team with A Solar-Powered

Charging Station

6.4.1 Results from Simulation and Experimental Testbed

In this section, results from simulation and experimental test trials are presented. All sim-

ulation and experiments presented are conducted in the indoor testing environment described

in Nathaniel Kingry and Dai (2018). Due to the limited testing area, the cooperative mission

requires the multi-robot team (6.13) to visit eight objective points within the area. The CHO

method described in Chapter 5 is implemented using a 75% crossover rate and a 1% mutation

rate for the GA settings. Parameters in PSO are set as C1 = C2 = 2 and I = 1. The planned

paths for all UGVs are shown in Figure 6.14 and the time history of the associated power sched-

ules for the UGVs with z = 1, 2, 3 are shown in Figures 6.15-6.17, respectively. The predicted

harvesting power, PIN , is represented as ( ), the power consumed, POUT , as ( ), and the

change in battery energy, ∆Battery, as ( ). The associated experimental data is represented

as ( ) for each variable (PIN , POUT , and ∆Battery).

Figure 6.13 A multi-robot team including a solar-powered mobile charging station and two

worker UGVs.
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Figure 6.14 Optimized path plan.

Figure 6.15 Energy schedule of the solar-powered mobile charging station, UGV 1.
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Figure 6.16 Energy schedules of worker UGV 2.

Figure 6.17 Energy schedules of worker UGV 3.

Table 6.4 Optimized Mission Characteristics

Vehicle Travel Time ∆Battery Charging Time

(s) (J) (s)

UGV z = 1 43.54 5.236 -

(Charging station)

UGV z = 2 29.88 6.956 152.13

UGV z = 3 43.85 0.105 173.46
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Table 6.5 Statistical Analysis of CHO Method

Average Min Max Standard

Deviation

Computation Time (s) 20.32 15.21 26.82 2.39

Mission Time (s) 217.70 217.32 219.67 0.64

UGV 1 ∆Battery (J) 11.69 5.24 21.88 5.07

UGV 2 ∆Battery (J) 6.41 0.11 6.96 1.88

UGV 3 ∆Battery (J) 0.55 0.11 5.66 1.58

The optimized plan with predicted mission characteristics is shown in Table 6.4. The

predicted total mission time from the optimized plan is 217.32 seconds. The average total

mission time from the five experimental trials is 217.81 seconds and the ∆Battery of the five

trials for each UGVs with index z = 1, 2, 3 are 6.619 J, 3.653 J, and 1.942 J, respectively. A

video of the experimental test is provided.

To verify robustness of the proposed method, statistical analysis has been performed that

generates 50 virtual simulation trials to examine the computational performance. The results

are shown in Table 6.5. Among the 50 trials, 46 trials find the same optimized solution and

the other 4 cases generate solutions with a few seconds additional time cost.

6.4.2 Analysis of CHO and Errors from Experimental Testbed

Figure 6.18 demonstrated one simulation from CHO. The shown test run converged to the

optimal in eight generations and the top three fitness solutions of each generation are listed.

Compared to the virtual simulation results, the small variations observed in the experimental

test data Pin, Pout, and ∆Battery can largely be attributed to the interaction between the

solar lights and the Vicon system, which cause an average of 1.51% error in distance traveled

and 1.20% error in turn angle. These errors were determined by following a similar process

described in our previous work [Kaplan et al. (2016)]. However, instead of operating a single

vehicle in the area, the error was determined under operating conditions. Other sources of error

include measurement noise in the UGVs’ voltage/current sensors and communication latency.

In order to reduce communication latency, it was selected that the charging station data was

sampled twice as often as other rovers, since the charging station experiences faster changes in

the power gained due to the solar insolation of the environment.
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Figure 6.18 Example of a test simulation of CHO.
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CHAPTER 7. CONCLUSION

This manuscript has studied four different constrained path planning problems and their

potential for future real-world implementation. (1) The sampling-based heuristic search method

refines the trajectory obtained from the optimized Rapidly-Exploring Random Tree algorithm

to satisfy the kinematic constraints of UAV and reduce the cost of flight time for the point-

to-point obstacle avoiding problems. (2) Extended multi-waypoint flight path is segmented

and converted into Quadratically Constrained Quadratic Programming problem along with

undetermined sequence and flight kinematics which is gradually examined by an iterative rank

minimization method in the collision-free zone. (3) The constrained Rapidly-Exploring Random

Tree method is modified from the original RRT to build a set of paths which awared of the

surrounding energy resources and power consumption of the solar-powered UGV for evaluating

optimal path with maximum area coverage. (4) A computationally efficient cascaded heuristic

optimization method is proposed to search for the optimal mission plan for the described multi-

Hamiltonian Path Problem with nonlinear dynamics and constraints of a cooperative team of

UGVs including a solar-powered mobile charging station to prolong overall operation times.

All scenarios have been verified by computer simulations or experimental results.

Future efforts will generalize proposed ideas to address uncertainty and robustness issue,

and conduct real-world testing with proper process and equipment. In addition, improving

the accuracy of algorithms for large-scale models and reducing computation time for real-time

executions.
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